O.P.Code: 16ME325

R16

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech IV Year I Semester Supplementary Examinations June-2024 REFRIGERATION & AIR CONDITIONING

(Common to AGE & ME)

Ti	me	: 3 Hours	Max.	Mar	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1		State the applications of refrigeration.	CO ₁	L1	6M
	b	Define Unit of Refrigeration.	CO ₁	L2	6M
		OR			
2	a	Describe Boot strap air refrigeration system, with a schematic diagram	CO ₁	L2	6M
	_	and show the cycle on T-S Diagram.			
	b	Describe with a neat sketch a Reduced ambient air refrigeration system.	CO ₁	L2	6M
		UNIT-II			
3		State the functions of expansion device.	CO ₂	L1	6M
	b	Name the different refrigerants generally used.	CO ₂	L1	6M
4		OR			
4		Sketch and explain a two-stage cascade refrigeration system.	CO ₂	L5	12M
_		UNIT-III			
5		Differentiate between vapour absorption and vapour compression	CO ₃	L4	12M
		refrigeration systems.			
6		OR Explain therms electric refrigeration system with start 1	COA		407 -
U		Explain thermo-electric refrigeration system with sketch.	CO ₃	L2	12M
7		Atmospheric single 0.005 has a state of 1.11	~~.		
/		Atmospheric air at 0.965 bar enters the adiabatic saturator. The wet bulb temperature is 200C and dry bulb temperature is 310C during adiabatic	CO4	L4	12M
		saturation process. Determine (i) humidity ratio of the entering air			
		(ii) vapour pressure and relative humidity at 310C and (iii) dew point			
		temperature.			
		OR			
8	a	With help of psychrometric chart, Explain the cooling and	CO 4	L3	6M
		humidification processes.			
	b	Define saturated air, degree of saturation	CO ₄	L1	6M
		UNIT-V			
9		Why the ducts are used in an air conditioning system.		L1	6M
	b	Which material is commonly used for making ducts in air conditioning	CO ₅	L1	6M
		systems?			
10		OR			
10		An air conditioning plant is required to supply 60 m3 of air per minute at	CO ₅	L4	12M
		a DBT of 21°C and 55 % RH. The outside air is at DBT of 28 °C and 60 % RH. Determine the mass of vector desired and associate of the section			
		% RH. Determine the mass of water drained and capacity of the cooling coil. Assume the air conditioning plant first to dehumidify and then to			
		cool the air. Take W1=0.0142, W2=0.0084 kj /kg of dry air, Vs2=0.845			
		m3 / kg, h1=64.8 kj/kg, h2=42.4 kj/kg.			
		*** END ***			

*